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Abstract
For a non-Hermitian Hamiltonian H possessing a real spectrum, we introduce a
canonical orthonormal basis in which a previously introduced unitary mapping
of H to a Hermitian Hamiltonian h takes a simple form. We use this
basis to construct the observables Oα of the quantum mechanics based on
H. In particular, we introduce pseudo-Hermitian position and momentum
operators and a pseudo-Hermitian quantization scheme that relates the latter
to the ordinary classical position and momentum observables. These allow
us to address the problem of determining the conserved probability density
and the underlying classical system for pseudo-Hermitian and in particular
PT -symmetric quantum systems. As a concrete example we construct the
Hermitian Hamiltonian h, the physical observables Oα , the localized states and
the conserved probability density for the non-Hermitian PT -symmetric square
well. We achieve this by employing an appropriate perturbation scheme. For
this system, we conduct a comprehensive study of both the kinematical and
dynamical effects of the non-Hermiticity of the Hamiltonian on various physical
quantities. In particular, we show that these effects are quantum mechanical
in nature and diminish in the classical limit. Our results provide an objective
assessment of the physical aspects of PT -symmetric quantum mechanics and
clarify its relationship with both conventional quantum mechanics and classical
mechanics.

PACS number: 03.65.−w

1. Introduction

Most of the recent publications on PT -symmetric quantum mechanics focus on the study of
the spectral properties of various (non-Hermitian) PT -symmetric Hamiltonians. The results
reported in these publications are mainly mathematical. The purpose of the present paper is to
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address some of the most basic problems related to the physical aspects of PT -symmetric and
more generally pseudo-Hermitian quantum mechanics. In particular, we will offer a complete
description of the nature and the construction of the physical observables and provide a method
to compute various physical quantities in these theories. We will also elucidate the relationship
between these theories and conventional classical and quantum mechanics.

As our approach is motivated by the mathematical results obtained within the framework
of the theory of pseudo-Hermitian operators [1–3], we begin our discussion by a brief review
of the relevant developments.

A central question that arises in connection with the current interest in PT -symmetric
quantum mechanics [4, 5] is: ‘What are the necessary and sufficient conditions for the reality
of the spectrum of a linear operator?’ Reference [2] provides the following answer to this
question. If the operator acts in a Hilbert space H and has a complete set of eigenvectors (i.e.,
it is diagonalizable) then its spectrum is real if and only if (one and consequently all of ) the
following equivalent conditions holds:

(C1) There exists a positive-definite operator1 η+ : H → H that fulfils

H † = η+Hη−1
+ , (1)

i.e., H is pseudo-Hermitian [1] and the set2 of all the metric operators η satisfying
H † = ηHη−1 includes a positive-definite element.

(C2) H is Hermitian with respect to some positive-definite inner product 〈·, ·〉+ on H (which
is generally different from its defining inner product 〈·|·〉). A specific choice for 〈·, ·〉+ is
〈·|η+·〉.

(C3) H may be mapped to a Hermitian Hamiltonian h by a similarity transformation, i.e., H is
quasi-Hermitian [7, 8].

The framework provided in [1, 2] also explains the connection with PT -symmetry. It turns
out that, under the same conditions, pseudo-Hermiticity of H is equivalent to the presence of
an antilinear symmetry, PT -symmetry being the primary example [3, 9].

The condition that the Hamiltonian H must have a complete set of eigenvectors may be
relaxed by extending the analysis of [1–3] to block-diagonalizable linear operators as discussed
in [10, 11]. However, note that physically this condition is intertwined with the requirements
of the quantum measurement theory. The failure to satisfy it is equivalent to allowing for the
states that have zero overlap with all the energy eigenstates. As a result, the total probability
of measuring any energy value for such a state is identically zero, i.e., one can never perform
an energy measurement on such a state; it must not be possible to prepare it!

These physical considerations form the basis of a general framework, called pseudo-
Hermitian quantum mechanics [12] that allows for formulating a quantum theory based on an
eigenvalue problem for a linear operator H acting in a (complex) vector space V . A typical
example is an eigenvalue (Sturm–Liouville) equation for a differential operator acting in a
complex function space. Supposing that this eigenvalue problem has a solution, i.e., there are
eigenvectors ψn ∈ V , one lets VH be the span of ψn, endows VH with an arbitrary positive-
definite inner product, Cauchy completes [13] this inner product space to a Hilbert space H,
and views H as a (possibly densely defined) linear operator acting in H. Then, by construction,
H is a diagonalizable operator acting in H, and the results of [1–3] apply.

As noted in [14], the equivalence of the reality of the spectrum of H and condition (C2) is
the basic mathematical result underlying the construction of the so-called CPT -inner product
for PT -symmetric quantum systems [15]. Also, as shown in [16], one can use condition (C3)

1 An operator is called positive definite if it is Hermitian and has a strictly positive spectrum.
2 For a discussion of this set, see [6].
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to map H to a Hermitian Hamiltonian h acting in H. If one identifies the physical Hilbert
space Hphys of the system with H endowed with the positive-definite inner product 〈·, ·〉+, then
H and h are unitarily equivalent.

For models with a finite-dimensional Hilbert space the construction of the Hermitian
Hamiltonian h is straightforward. In some cases h has a much simpler form than H [16]. The
situation is quite different for systems with an infinite-dimensional Hilbert space, as almost
nothing specific is known about the structure of h. It is nevertheless expected to be a generally
complicated nonlocal (non-differential) operator [16].

The study of systems with an infinite-dimensional Hilbert space is particularly important,
because it is for such systems that one can seek for an underlying classical system and attempt
to formulate an associated quantization scheme. Obviously, a proper treatment of these issues
requires a careful study of the notion of a physical observable in pseudo-Hermitian and, in
particular, PT -symmetric quantum mechanics.

It has recently been shown [17] that the formulation of observables in PT -symmetric
quantum mechanics as originally proposed in [15] and reiterated in [18] is inconsistent with
its dynamical aspects and that enforcing the rules of the standard measurement theory restricts
the choice of the observables Oα to linear operators that are Hermitian with respect to the inner
product of the physical Hilbert space Hphys.3 Accepting this definition for the observables,
one can easily show that the unitary mapping that maps H to h also maps the observables
Oα to the Hermitian operators oα acting in H. This in turn means that a physical system
described by the Hilbert space Hphys, the PT -symmetric Hamiltonian H, and the observables
Oα may be equivalently described by the Hilbert space H, the Hermitian Hamiltonian h, and
the observables oα .

In this paper, we will introduce a canonical basis in which the construction of the
Hermitian Hamiltonian h and the physical observables Oα simplifies considerably. This
allows us to determine the underlying classical system and develop a pseudo-Hermitian
quantization scheme. We will also introduce and construct the pseudo-Hermitian position
operator, the corresponding position wavefunctions and the conserved probability density. As
a concrete application of our general results we perform a thorough investigation of the PT -
symmetric square well Hamiltonian, computing the corresponding Hermitian Hamiltonian h,
the observables Oα (in particular the pseudo-Hermitian position operator), the probability
density, the position expectation values and the localized states. We will also describe the
effects of the non-Hermiticity of the Hamiltonian on the latter quantities and discuss the
underlying classical Hamiltonian.

Throughout this paper, we will assume that H is diagonalizable and has a nondegenerate,
real, discrete spectrum. The extension of the results to degenerate spectra may be easily
achieved following the approach of [1–3, 14]. The presence of a continuous part of the
spectrum does not lead to any serious complications either; see, for example, [21, 22].

2. Canonical metric basis

Let H be a Hilbert space and H : H → H be a diagonalizable linear (Hamiltonian) operator
having a real, nondegenerate, discrete spectrum. Following [1–3, 14], we shall label the

3 To resolve the inconsistency reported in [17], the authors of [15] have recently revised their definition of observables
[19]. As noted in [20], when the contour defining the boundary conditions of the problem is the real line, the definition
reduces to ours. But even in this case it is a more restrictive definition as it implies that the Hamiltonian must be (not
only PT -symmetric but also) symmetric, i.e., in x-representation it is a symmetric (infinite) matrix. This leads to
some undesirable consequences [20].
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eigenvalues of H with En and let {|ψn〉} denote a basis of H consisting of the eigenvectors
|ψn〉 of H,

H |ψn〉 = En|ψn〉. (2)

Then one can construct another basis {|φn〉} of H that satisfies [3]

H †|φn〉 = En|φn〉, 〈φn|ψm〉 = δmn,
∑

n

|ψn〉〈φn| = 1. (3)

In particular, {|ψn〉, |φn〉} form a biorthonormal system [23], and

H =
∑

n

En|ψn〉〈φn|, H † =
∑

n

En|φn〉〈ψn|. (4)

Here and throughout this paper, for any linear operator A acting in H, A† stands for the adjoint
of A, i.e., the unique linear operator satisfying 〈·|A·〉 = 〈A† · |·〉.

A central result of [1] is that the operator

η+ =
∑

n

|φn〉〈φn| (5)

satisfies (1). It is also manifestly positive definite, because it satisfies η+ = w†w, where
w := ∑

n |n〉〈φn| and {|n〉} is an orthonormal basis of H, and that it is invertible, with the
inverse given by

η−1
+ =

∑
n

|ψn〉〈ψn|. (6)

We can use (5) to introduce the positive-definite inner product,

〈·, ·〉+ := 〈·|η+·〉, (7)

and identify the physical Hilbert space Hphys with the underlying vector space of H endowed
with this inner product. This means that as complex vector spaces H and Hphys are identical,
but as Hilbert spaces they are not.

In view of (1), the Hermitian Hamiltonian h of condition (C3) has the form [16]

h = ρHρ−1, (8)

where ρ := √
η+ is the unique positive(-definite) square root of η+. The transformation

H → h corresponds to the linear mapping |ψ〉 → ρ|ψ〉. It is a simple exercise to check
that, for any pair |ψ〉, |ψ ′〉 of state vectors, 〈ψ,ψ ′〉+ = 〈ψ |η+ψ

′〉 = 〈ρψ |ρψ ′〉. Hence as a
mapping of Hphys onto H, ρ is a unitary operator4.

Now, consider a physical system S that is described by the Hilbert space Hphys, the
Hamiltonian H and the observables Oα that are Hermitian operators acting in Hphys.5 Because
ρ : Hphys → H is a unitary transformation, Oα : Hphys → Hphys is Hermitian if and only if
oα := ρOαρ−1 : H → H is Hermitian. This, in particular, means that the observables Oα

may be constructed from the Hermitian operators oα according to [17]

Oα = ρ−1oαρ. (9)

Consequently, we can also describe the physical system S using the original Hilbert spaceH, the
Hermitian Hamiltonian h and the observables oα . The two descriptions are physically identical

4 A linear map U : H1 → H2 between two inner product (in particular Hilbert) spaces H1 and H2 with inner
products 〈·, ·〉1 and 〈·, ·〉2 is said to be a unitary operator if for all ζ, χ ∈ H1, we have 〈U(ζ ), U(χ)〉2 = 〈ζ, χ〉1 [13].
U is unitary if and only if it is invertible (one-to-one and onto) and U−1 = U †.
5 Being a Hermitian operator acting in Hphys, the Hamiltonian H is also an observable. But as operators acting in H
neither H nor Oα are Hermitian.
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as there is a one-to-one correspondence between the states and the observables used in these
descriptions and more importantly the physical quantities such as the transition amplitudes or
expectation values of the observables do not depend on the choice of the description.

The main ingredient of the above construction is the operator ρ = √
η+. It has three

important properties:

(P1) As an operator mapping Hphys to H, it is a unitary operator.
(P2) As an operator mapping H to H, it is a Hermitian operator.
(P3) As an operator mapping Hphys to Hphys, it is also a Hermitian operator6. In particular,

both ρ and η+ = ρ2 are physical observables.

Property (P2) suggests that a natural method for computing the operators h and Oα is to use
an orthonormal basis {|εn〉} of H that consists of the eigenvectors7 |εn〉 of η+. Denoting the
eigenvalues of η+ by εn, we have

η+|εn〉 = εn|εn〉, 〈εm|εn〉 = δmn,
∑

n

|εn〉〈εn| = 1. (10)

These in turn imply

η+ =
∑

n

εn|εn〉〈εn|, ρ =
∑

n

√
εn|εn〉〈εn|. (11)

In the following, we shall refer to {|εn〉} as a canonical metric basis.
Let A be a linear operator acting in H, we can uniquely identify A with its matrix

representation (Amn) in the basis {|εn〉}, where

Amn := 〈εm|A|εn〉. (12)

Because {|εn〉} is an orthonormal basis of H, the matrix elements of A† are given by

A†
mn = A∗

nm. (13)

In particular, A is Hermitian with respect to the defining inner product 〈·|·〉 of H if and only if
(Amn) is a Hermitian (possibly infinite) matrix, i.e., A∗

mn = Anm.
The following important identities follow from (1), (5), (6) and (8):

ε−1
n εmHmn = H †

mn = H ∗
nm, (14)

εn =
∑
m

|〈φm|εn〉|2 =
(∑

m

|〈ψm|εn〉|2
)−1

, (15)

hmn =
√

εm

εn

Hmn. (16)

Furthermore, let o : H → H be a Hermitian operator and O := ρ−1oρ, then

Omn =
√

εn

εm

omn. (17)

Equations (16) and (17) provide the following expressions for the Hermitian Hamiltonian
h : H → H and the observables O : Hphys → Hphys:

h =
∑
m,n

√
εm

εn

Hmn|εm〉〈εn|, (18)

O =
∑
m,n

√
εn

εm

omn|εm〉〈εn|. (19)

6 This can be easily checked: 〈·, ρ·〉+ = 〈·, |η+ρ·〉 = 〈·|ρη+·〉 = 〈ρ · |η+·〉 = 〈ρ·, ·〉+.
7 Here we suppress the degeneracy labels for the eigenvectors |εn〉 for simplicity. Note also that in view of the
non-uniqueness [24, 14] of η+ one can assume without loss of generality that the eigenvalues of η+ are nondegenerate.
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3. Classical system and its pseudo-Hermitian canonical quantization

For H = L2(R), we can define the η+-pseudo-Hermitian position (X) and momentum (P)
operators according to

X :=
∑
m,n

√
εn

εm

xmn|εm〉〈εn|, P :=
∑
m,n

√
εn

εm

pmn|εm〉〈εn|, (20)

where xmn := 〈εm|x|εn〉, pmn := 〈εm|p|εn〉, and x and p are the usual position and momentum
operators acting in H = L2(R).

Clearly, the η+-pseudo-Hermitian position and momentum operators satisfy the canonical
commutation relation

[X,P ] = ih̄1. (21)

Indeed, together with the identity operator 1, they provide a unitary irreducible representation
of the Weyl–Heisenberg algebra which has the physical Hilbert space Hphys as the
representation space. The fact that by construction this representation is unitarily equivalent
to the standard representation of the Weyl–Heisenberg algebra (that has H = L2(R) as the
representation space) is a manifestation of von Neumann’s celebrated uniqueness theorem8.

Having introduced the η+-pseudo-Hermitian position and momentum operators, we can
also speak of the following η+-pseudo-Hermitian canonical quantization of classical systems,

xc → X, pc → P, {·, ·}c → −ih̄−1[·, ·], (22)

where xc, pc and {·, ·}c stand for classical position, momentum and Poisson bracket,
respectively. For instance, η+-pseudo-Hermitian quantization of the classical Hamiltonian
for a free particle leads to the pseudo-Hermitian quantum Hamiltonian:

Hfree = P 2

2m
= ρ−1

[
p2

2m

]
ρ, (23)

which is a generally nonlocal (non-differential) operator.
Note that in general the Hamiltonian operator H, that is used to construct the metric

operator η+ and consequently define the above notion of pseudo-Hermitian quantization, does
not have the standard form P 2/(2m) + V (X). For example, a PT -symmetric Hamiltonian of
the standard form [4] (with a complex-valued potential v(x)),

H = p2

2m
+ v(x) = ρ

[
P 2

2m
+ v(X)

]
ρ−1, (24)

cannot generally be expressed in the form P 2/2m + V (X) for any real-valued function V .
Nevertheless, because (in light of property (P3)) ρ is also a physical observable, one can express
ρ and ρ−1 and consequently the Hamiltonian (24) as certain power series in X and P (modulo
commutation relations (21)). This in turn implies that the classical Hamiltonian Hc, whose
η+-pseudo-Hermitian quantization yields H, is not generally of the standard (kinetic+potential)
type. Rather it is a complicated (non-polynomial) function of xc and pc.

The classical Hamiltonian Hc may also be obtained using the Hermitian Hamiltonian h
which according to (8) and (24) takes the form

h = ρ

[
p2

2m
+ v(x)

]
ρ−1. (25)

8 This theorem states that up to unitary equivalence the Weyl–Heisenberg algebra has a unique unitary irreducible
(projective) representation [13].
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Again this is a nonlocal operator which can be expressed as a power series in p with
x-dependent coefficients. This is because (according to property (P2)) ρ and ρ−1 are Hermitian
operators acting in H. The classical Hamiltonian may be obtained by replacing x and p in the
expression for h by their classical counterparts xc and pc, respectively. Clearly, the resulting
Hc is identical with that obtained from H.

Next, we wish to recall a simple procedure for associating a power series in x and p (i.e.,
a pseudo-differential operator) with a nonlocal linear operator K : L2(R) → L2(R). Suppose
that K may be expressed in terms of its kernel K : R

2 → C according to

(Kψ)(x) =
∫

R

K(x, x ′)ψ(x ′) dx ′. (26)

Then for real analytic wavefunctions, which form a dense subset of L2(R), we can expand
ψ(x ′) appearing on the right-hand side of (26) in Taylor series about x. Substituting the result
in (26), we find (Kψ)(x) = K̂ψ(x) where

K̂ :=
∞∑


=0

(−ih̄)
a
(x)
d


dx

, (27)

a
(x) = i



!h̄


∫
R

K(x, x ′)(x ′ − x)
 dx ′. (28)

As a result, we have the following (densely defined) identity

K =
∞∑


=0

a
(x)p
. (29)

If the operator K is Hermitian, we can express (29) in a manifestly Hermitian form, namely

K = 1

2

∞∑

=0

[a
(x)p
 + p
a
(x)∗]. (30)

The classical counterpart of this operator is the following real-valued function of the phase
space (R2),

Kc(xc, pc) :=
∞∑


=0

Re[a
(xc)]p


c, xc, pc ∈ R, (31)

where Re means ‘real part of’.
The results reported in this section clearly generalize to the Hilbert spaces H(V ) where

V is R
n or a topologically equivalent subset of R

n. Together with the results of the preceding
section, they lead to the following prescription for determining the classical Hamiltonian for
a pseudo-Hermitian (particularly PT -symmetric) quantum system:

(1) Given the Hamiltonian H, compute a metric operator η+.
(2) Diagonalize η+ and construct a corresponding canonical metric basis {|εn〉}.
(3) Compute the matrix elements Hmn of H in this basis and use (18) to obtain the Hermitian

Hamiltonian h.
(4) Apply the above-described method of associating a pseudo-differential operator with the

operator h, express the latter in a manifestly Hermitian form (h + h†)/2, and take x → xc

and p → pc in the resulting expression. This yields a classical Hamiltonian Hc for the
theory.
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The Hamiltonian Hc obtained in this way generally involves h̄. The strictly classical
Hamiltonian will correspond to evaluating h̄ → 0 limit of Hc. The latter is an admissible
prescription only if this limit exists.

We end this section by making the last step of the above prescription more specific. Using
(18), (28), (29) and (31), identifying the kernel of h with 〈x|h|x ′〉, and denoting the normalized
eigenfunctions of η+ by εn, i.e.,

εn(x) = 〈x|εn〉, (32)

we have

h =
∞∑


=0

a
(x)p
, Hc =
∞∑


=0

Re[a
(xc)]p


c, (33)

a
(x) = i



!h̄


∑
m,n

√
εm

εn

Hmnεm(x)

∫
R

εn(x
′)∗(x ′ − x)
 dx ′. (34)

Admittedly, the computation of h as outlined above is too complicated to be done exactly.
In section 5, we study its application to a simple PT -symmetric model where a particularly
useful approximation scheme allows for computing h with any desired accuracy. Finally, we
should like to add that the above prescription for computing h may also be used to compute
the pseudo-Hermitian observables such as the position operator X.

4. Localized states, position wavefunctions and the probability density

Having introduced the η+-pseudo-Hermitian position operator X we can identify its
(generalized [25]) eigenvectors ξ (x) with the localized states of the system. They are defined
by

Xξ(x) = xξ (x), for all x ∈ R. (35)

In view of the identity X = ρ−1xρ, we have

ξ (x) = ρ−1|x〉, (36)

where |x〉 are the usual position kets satisfying, for all x, x ′ ∈ R,

〈x|x ′〉 = δ(x − x ′),
∫

R

dx|x〉〈x| = 1. (37)

Using these relations and the fact that ρ : Hphys → H is a unitary mapping, we can establish
the orthonormality and completeness relations for the localized states ξ (x):

〈ξ (x), ξ (x ′)〉+ = δ(x − x ′),
∫

R

dx(x) = 1, (38)

where (x) denotes the projection operator defined by

(x)ψ := 〈ξ (x), ψ〉+ξ
(x), for all ψ ∈ Hphys. (39)

Next, consider a particle9 whose state at a fixed time t0 is described by the state vector
ψ ∈ Hphys. We can introduce the position wavefunction,

�(x) := 〈ξ (x), ψ〉+ = 〈x|ρ|ψ〉, (40)

and use (38) to expand the state vector ψ in the position basis {ξ (x)} according to

ψ =
∫

R

�(x)ξ (x) dx. (41)

9 Here by a particle we mean a quantum system having R as its classical configuration space.
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As seen from (40), the position wavefunction �(x) is generally different from ψ(x). This is a
direct consequence of the fact that H as an operator acting in H = L2(R) fails to be Hermitian.
Furthermore, in view of (38) and (40),

‖�‖2 :=
∫

R

|�(x)|2 dx =
∫

R

|〈ξ (x), ψ〉+|2 dx =
∫

R

〈ψ,(x)ψ〉+ dx = 〈ψ,ψ〉+ < ∞.

Hence as a function mapping R to C, the wavefunction � belongs to L2(R).10 The converse is
also true in the sense that every square-integrable function � defines a state vector ψ ∈ Hphys.
Therefore, we may identify L2(R) with the vector space of position wavefunctions � for the
system. It is also a straightforward exercise to show that the assignment F of a wavefunction
� =: F(ψ) to each state vector ψ , viewed as a map F : Hphys → L2(R), is a unitary operator.
In order to see this, let ψ, φ ∈ Hphys be arbitrary state vectors and � = F(ψ) and � = F(ψ),
then

〈F(ψ)|F(φ)〉 = 〈�|�〉 =
∫

R

�(x)∗�(x) dx =
∫

R

〈ψ, ξ (x)〉+〈ξ (x), φ〉+ dx

=
∫

R

〈ψ,(x)φ〉+ dx = 〈ψ, φ〉+.

In the following, we will assume without loss of generality that ψ is normalized with
respect to the inner product 〈·, ·〉+, i.e., set 〈ψ,ψ〉+ = ‖�‖2 = 1.

According to the standard quantum measurement theory, the probability of finding the
particle in a region V ⊆ R at time t0 is given by

�V (ψ) :=
∫

V

|〈ξ (x), ψ〉+|2 dx. (42)

Hence

�(x) := |〈ξ (x), ψ〉+|2 = |�(x)|2 (43)

is the probability density of the localization of the particle in space.
Unlike the naive ‘probability density’ �(0)(x) := |ψ(x)|2, �(x) defines a conserved total

probability. This follows from the fact that H is Hermitian with respect to the inner product
〈·, ·〉+ of Hphys. It is instructive to demonstrate the conservation of total probability in the
position representation. In order to do so, consider the time evolution of the state vector ψ as
determined by the Schrödinger equation:

ih̄
d

dt
ψ(t) = Hψ(t). (44)

Computing the inner product of both sides of this equation with ξ (x) (using the inner product
〈·, ·〉+) and employing the completeness relation given in (38), we find

ih̄
d

dt
�(x; t) = ĥ�(x; t), (45)

where �(x; t) := 〈ξ (x), ψ(t)〉+ and ĥ : L2(R) → L2(R) is defined by

ĥ�(x; t) :=
∫

R

K(x, y)�(y; t) dy, K(x, y) := 〈ξ (x), Hξ(y)〉+. (46)

Because, as an operator acting in Hphys,H is Hermitian,

K(x, y)∗ = 〈ξ (x), Hξ(y)〉∗+ = 〈Hξ(x), ξ (y)〉∗+ = 〈ξ (y), Hξ(x)〉+ = K̂(y, x).

10 Here we view � as an abstract vector belonging to L2(R). The state vector ψ also belongs to the Hilbert space H
which coincides with L2(R). However, these two copies of L2(R) should not be confused.
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This is sufficient to conclude that ĥ is a Hermitian operator acting in L2(R). As a result,
in the position representation the dynamics is determined by a Hermitian Hamiltonian; the
time-evolution operator, e−i(t−t0)ĥ/h̄, for the position wavefunctions is unitary; and the total
probability

�R(ψ(t)) =
∫

R

|�(x; t)|2 dx

is conserved.
The Hamiltonian operator ĥ is directly related to the Hermitian Hamiltonian h.

Substituting (36) in (46) and using (7) and (8), we have

K(x, y) = 〈x|ρ−1η+Hρ−1|y〉 = 〈x|h|y〉,
ĥ�(x; t) =

∫
R

〈x|h|y〉�(y; t) dy =
∫

R

〈x|h|y〉〈y|ρψ(t)〉 dy = 〈x|hρψ(t)〉.

Hence, in light of (40), the Hamiltonian ĥ is the usual position representation of the Hermitian
Hamiltonian h, i.e.,

〈x|h = ĥ〈x|. (47)

This relationship between the Hamiltonian operators ĥ and h extends to all the physical
observables. Given an observable O acting in Hphys and the corresponding operator
o = ρOρ−1 acting in H, we can define an associated Hermitian operator ô acting in L2(R)

that realizes the action of O on a state vector ψ ∈ Hphys in terms of the corresponding position
wavefunction � according to

Oψ =
∫

R

[ô�(x)]ξ (x) dx. (48)

The operator ô is the position representation of the abstract operator o:

〈x|o = ô〈x|. (49)

In view of (48), (49), (38) and (40), the expectation value of O in a state described by the
normalized state vector ψ and position wavefunction � is given by

〈ψ,Oψ〉+ =
∫

R

�(x)∗ô�(x) dx. (50)

As shown in the preceding paragraphs, one can formulate both the dynamics and the
kinematics of the theory using the position wavefunctions �. In this formulation, the
observables and in particular the Hamiltonian are Hermitian operators acting in H similarly
to the conventional quantum mechanics. In order to use this formulation, however, one needs
a more explicit expression for the wavefunction �. We may derive such an expression using
the canonical metric basis {|εn〉}. In view of (10), (11), (32) and (40), we have

�(x) =
∑

n

fnεn(x), fn := ε1/2
n

∫
R

εn(x
′)∗ψ(x ′) dx ′. (51)

5. Application to the PT -symmetric square well

The PT -symmetric square well potential, originally introduced by Znojil in [26], provides a
simple model with generic properties of general PT -symmetric potentials. Its Hamiltonian is
given by

H = p2

2m
+ v(x), (52)
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where

v(x) =




∞ for x /∈ (−L
2 , L

2

)
iζ for x ∈ (−L

2 , 0
)

−iζ for x ∈ (
0, L

2

)
,

(53)

L ∈ R
+ and ζ ∈ R. Usually, one employs units in which L = 2,m = 1/2 and h̄ = 1. This is

equivalent to using the dimensionless variables

x → x :=
(

2

L

)
x, p → p :=

(
L

2h̄

)
p, ζ → Z :=

(
mL2

2h̄2

)
ζ, (54)

and working with the dimensionless Hamiltonian,

H :=
(

mL2

2h̄2

)
H = p2 + v(x), (55)

where

v(x) =




∞ for x /∈ (−1, 1)

iZ for x ∈ (−1, 0)

−iZ for x ∈ (0, 1).

(56)

In the x-representation, the eigenvalue problem for H takes the form11[
− d2

dx2
+ v(x) − En

]
ψn(x) = 0. (57)

The Hilbert space to which the eigenvectors ψn belong is12

H = {ψ ∈ L2(R) | ψ(x) = 0 for |x| � 1} = {ψ ∈ L2([−1, 1]) | ψ(±1) = 0}. (58)

Clearly, H is not Hermitian with respect to the defining inner product 〈·|·〉 of H. This is an
indication that H is not the physical Hilbert space Hphys. In order to specify the latter, we
should determine an appropriate metric operator η+. This in turn requires the solution of the
eigenvalue equation (57).

The eigenvalue problem for the PT -symmetric square well admits an essentially explicit
solution. A detailed discussion is provided in [26, 27]. If Z is below the critical value Z� ≈ 4.48
the Hamiltonian has a real spectrum [26]13. For these values of the ‘non-Hermiticity’ parameter
Z, the Hilbert spaces H and Hphys are identical as complex vector spaces, i.e., they are obtained
by endowing their common vector space with different inner products.

In this paper, we will only be concerned with the case 0 � Z < Z�. For these values of
Z, one obtains the following complete set of eigenfunctions of H,

ψn(x) =
{
ψn−(x) for x ∈ [−1, 0]
ψn+(x) for x ∈ [0, 1],

(59)

ψn±(x) := αn sinh[κn±(1 ∓ x)]
sinh(κn±)

, (60)

11 The eigenvalues En of the Hamiltonian (52) are given by 2h̄2En/(mL2).
12 The Hilbert space associated with the unscaled Hamiltonian H is obtained by changing 1 in (58) to L/2.
13 Z = Z� marks an exceptional point [28] where two real eigenvalues cross in such a way that the Hamiltonian
becomes non-diagonalizable. Once Z exceeds Z�, H regains its diagonalizability, but a pair of complex-conjugate
eigenvalues appear in its spectrum [10, 6]. Increasing the value of Z indefinitely one encounters an infinite number of
exceptional points passing each of which produces a complex-conjugate pair of eigenvalues.
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where αn are arbitrary nonzero real coefficients,

κn± = sn ∓ itn, (61)

sn := Z

2tn
, (62)

and tn with n ∈ Z
+ are the real solutions of the transcendental equation:

(Z/tn) sinh(Z/tn) + 2tn sin(2tn) = 0. (63)

The eigenvalues En are given by

En = −(κ2
n+ + iZ

) = t2
n − s2

n. (64)

Usually, the coefficients αn are fixed arbitrarily [26] or kept as unimportant free coefficients
[27]. We will fix them in such a way that in the limit Z → 0, the eigenfunctions ψn of (59)
tend to the well-known normalized eigenfunctions ψ(0)

n of the conventional (Hermitian) square
well Hamiltonian (the case Z = 0):

lim
Z→0

ψn = ψ(0)
n := ψn|Z=0 . (65)

Because, by construction, ψn are also the eigenfunctions of the PT operator, the continuity
requirement (65) constrains ψ(0)

n to be PT invariant. The normalized and PT -invariant
eigenfunctions of the Hermitian infinite square well potential (Z = 0) are, up to a sign,
given by

ψ(0)
n (x) = iµn sin

[πn

2
(x + 1)

]
, (66)

where

µn := 1 + (−1)n

2
. (67)

The eigenfunctions (66) form an orthonormal basis of the Hilbert space (58). We will denote
the corresponding abstract basis vectors by |n〉, i.e.,

〈x|n〉 := ψ(0)
n (x), for all n ∈ Z

+. (68)

The continuity requirement (65) together with equation (66) restricts the coefficients αn

of the eigenfunctions (59). Specifically, if we only keep the leading-order term in powers of
Z and neglect the higher order terms, we find

αn = (−1)
n
2 �
(

Z

πn

)µn

, (69)

where
⌊

n
2

⌋
stands for the integer part of n

2 . Both the eigenvalues En and the eigenfunctions ψn

are therefore determined once we obtain the solutions of (63). As shown in [26], this equation
may be easily solved numerically for various values of Z. In this paper, we will solve this
equation perturbatively by expanding the relevant quantities in powers of Z.

5.1. Perturbative calculation of ψn and En

Suppose that tn admits a power series expansion about Z = 0,

tn =
∞∑

k=0

t (k)
n Zk, (70)
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where t (k)
n ∈ R are to be determined. Substituting (70) in (63), expanding both sides of the

resulting equation in powers of Z, solving it term by term for t (k)
n , and using (70), (62) and

(64), we find

tn =
(πn

2

){
1 − (−1)nν2 −

[
3 +

(−1)nπ2n2

6

]
ν4 + O(ν6)

}
, (71)

sn =
(πnν

2

){
1 + (−1)nν2 +

[
4 +

(−1)nπ2n2

6

]
ν4 + O(ν6)

}
, (72)

En =
(πn

2

)2
{

1 − [1 + 2(−1)n]ν2 −
[

5 + 2(−1)n +
(−1)nπ2n2

3

]
ν4 + O(ν6)

}
, (73)

where

ν := 2Z

(πn)2
, (74)

and O(νk) stands for terms of order νk and higher.
Equations (71)–(73) reveal the curious fact that the effective perturbation parameter

is 2Z/(πn)2.14 This is a clear indication that the non-Hermiticity of the Hamiltonian
H only affects the low-lying energy levels. This property of the PT -symmetric square
well Hamiltonian—which has been previously known [26]—is particularly significant, for
as we explain below it implies that within the confines of the perturbation theory all the
infinite sums appearing in the expressions (5), (18) and (51) for the metric operator η+,
the Hermitian Hamiltonian h, and the position wavefunctions may be safely truncated. For
example, for Z = 1, ν ≈ 0.2/n2. Therefore, if we set E(0)

n := En|ν=0 = (πn/2)2 and use
qn := ∣∣En

/
E(0)

n −1
∣∣ as a measure of the contribution of the non-Hermiticity of the Hamiltonian

to the energy eigenvalues, we find for n > 10 ν < 2 × 10−3 and qn < 1.3 × 10−5.15 More
generally, we can ignore the effects of the non-Hermiticity parameter Z for all the computations
involving the levels with n > 10 and still obtain results that are accurate at least up to three
decimal places.

In the following, we will employ an approximation scheme that neglects the effects of the
non-Hermiticity parameter Z for all levels with n greater than a given number N. In view of
the above discussion, the results obtained using this approximation will have an accuracy of
the order of

νN = 2Z

(πN)2
. (75)

We will respectively refer to N and νN as the ‘order’ and the ‘accuracy index’ of our
approximation scheme.

5.2. Construction of a canonical metric basis

Having obtained the expression for (71) and (72) for tn and sn, we can compute κn and use
equations (59), (60) and (69) to determine the eigenfunctions ψn of the Hamiltonian H as a
power series in ν.

14 The condition that the above perturbative calculations would be unreliable for the ground state, i.e., ν ≈ 1,
corresponds to Z ≈ 4.92 which is slightly above the critical value Z� = 4.48.
15 The value Z = 1, say for an electron (m ≈ 10−30 Kg) confined in a nanometre size well (L ≈ 10−9 m), corresponds
to an energy scale ζ ≈ 0.1 eV for the potential (53). This is comparable with the ground state energy (E1 ≈ 0.5 eV)

of the corresponding Hermitian infinite square well potential.
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The computation of a metric operator η+, however, involves the eigenfunctions φn of the
adjoint H† of H. It is easy to see that H† = H|

Z→−Z
. This suggests that

χn := ψn|Z→−Z
(76)

are eigenfunctions of H†. The eigenfunctions φn, which together with ψn form a biorthonormal
system for the Hilbert space H, are obtained by properly normalizing χn. They are given by

φn(x) = N−1
n χn(x), (77)

where

Nn := 〈ψn|χn〉 =
∫ 1

−1
ψn(x)∗χn(x) dx

=
2αn+αn−

[
1 − cos(2tn) cosh(2sn) + tn sin(2tn)[cos(2tn)−cosh(2sn)]

s2
n+t2

n

]
[cos(2tn) − cosh(2sn)]2

, (78)

and

αn+ := αn, αn− := αn|Z→−Z
. (79)

Next, we construct the metric operator (5) using the approximation scheme described in
the preceding section and the orthonormal basis {|n〉} consisting of the eigenvectors (68) of
the ordinary Hermitian infinite square well.

In the Nth order approximation, we have

|ψn〉
N≈ |φn〉

N≈ |n〉, for all n > N, (80)

where ‘
N≈’ stands for an equality that is valid up to terms of order νN . Combining (80) with

(5) we have

η+
N≈

N∑
n=1

|φn〉〈φn| +
∞∑

n=N+1

|n〉〈n| = 1 + δη(N)
+ , (81)

δη(N)
+ :=

N∑
n=1

(|φn〉〈φn| − |n〉〈n|). (82)

This relation shows that the metric operator η+ is essentially determined by its projection onto
the span HN of |n〉 with n � N . Indeed, at this order of approximation, HN may also be
identified with the span of ψn with n � N , or the span of φn with n � N .

Clearly, the Hilbert space H is the direct sum of HN and its orthogonal complement
H⊥

N := {ζ ∈ H|〈ζ |ψ〉 = 0,∀ψ ∈ HN }. As shown by (81) both of these are invariant
subspaces [29] of η+. Therefore, one can solve the eigenvalue problem for η+ by restricting
it onto HN and H⊥

N and diagonalize the resulting operators separately. The restriction of η+

onto H⊥
N coincides with that of the identity operator. In particular, it is diagonalized in the

basis {|n〉 : n > N}, and we have

|εn〉
N≈ |n〉 and εn

N≈ 1, for all n > N. (83)

The restriction of η+ onto HN yields a Hermitian operator having a Hermitian matrix
representation E in the basis {|n〉 : n � N}. According to (81), the matrix elements of E are
given by

Emn = 〈m|η+|n〉 =
N∑

k=1

〈m|φk〉〈φk|n〉, (84)
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which in view of (76)–(79), (59)–(62), (69), (71) and (72) can be computed explicitly. The
computation of the metric basis vectors |εn〉 with n � N is equivalent to the diagonalization
of the Hermitian matrix E . The latter can be done both numerically and perturbatively.

Let {�en} be a set of orthonormal eigenvectors of E so that E �en = en �en. Then clearly, up to
permutations of the labels, en coincide with εn for n � N . The canonical metric basis vectors
|εn〉, with n � N , are also related to the eigenvectors �en. To make this relation explicit, we
introduce the unitary N × N matrix U whose columns coincide with the vectors �en. Then, in
view of (11), it is a straightforward exercise to show that

|εn〉
N≈

N∑
m=1

Umn|m〉 and εn

N≈ en, for all n � N. (85)

Clearly, the above approximation scheme would be consistent only if in the above
calculation of Emn, en and �en one takes into account the contribution of the terms of order
ν
 for which ν
 � νN . We can use equations (74) and (75) to make this condition more
explicit. A simple calculation shows that the negligible terms are those of order ν
 with

 > 
n, where


n := ln(N) + r

ln n + r
, r := ln

(
π√
2Z

)
≈ 0.789 − ln Z

2
. (86)

Clearly, for smaller values of n one should include higher order corrections, the highest order
term being of the order ν
1 . For example, for Z � 1 and N � 25, 
1 � 5.03 and one can
safely ignore O(ν6). For the values Z = 1 and N = 25, the results will have a minimum
accuracy of the order of νN ≈ 3.2×10−4. Similarly for Z � 0.5 and N � 100, 
1 � 5.02 and
one can again ignore O(ν6). The minimum accuracy corresponding to the values Z = 0.5 and
N = 100 is of the order of νN ≈ 1.0 × 10−5. Note that for all the above values of Z and N the
terms given explicitly in equations (71)–(73) are sufficient to perform a consistent perturbative
calculation. A direct check of the validity of this statement is to compare the exact value Eexact

n

of En obtained by an accurate numerical solution of (63) and the perturbative value Epert
n of En

calculated using (73) and ignoring O(ν6). Clearly, the largest difference is for n = 1. If we
express

Eexact
1 = π2

4

(
1 + εexact

1

)
, Epert

1 = π2

4

(
1 + ε

pert
1

)
,

we find, for Z = 1, εexact
1 = 0.041 5652, ε

pert
1 = 0.041 5527. This is in complete agreement

with our expectations, because the difference, εexact
1 − ε

pert
1 = 1.244 65 × 10−5, is much smaller

than the accuracy index νN=25 ≈ 3.2 × 10−4.

Next, observe that our approximation, in particular (81), corresponds to η+
N≈ η

(N)
+ where

η(N)
+ ψ :=

{
η+ψ if ψ ∈ HN

ψ if ψ ∈ H⊥
N .

It is a reliable approximation, only if the distance between η
(N)
+ and the identity operator 1, as

defined by

σN :=
√

trace
[(

η
(N)
+ − 1

)2] =
√

trace
[(

δη
(N)
+

)2]
, (87)

has a finite large N-limit. This makes σN a useful measure of the validity of the above
approximate calculation of the canonical metric basis {|εn〉}. Clearly, σN is just the Frobenius
or Euclidean distance [30] between E and the N × N identity matrix I:

σN = ‖E − I‖2 =
√

trace[(E − I )2] =
[

N∑
n=1

(εn − 1)2

]1/2

, (88)
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Figure 1. Graph of σN as a function of N, for Z = 1.

where ‖ · ‖2 stands for the Frobenius (Euclidean) norm [30], defined for every square matrix
M by

‖M‖2 :=
√

trace(M†M). (89)

Figure 1 shows a plot of σN for Z = 1 and N � 25 for which we can neglect O(ν6) in
our calculations while retaining the consistency of our approximation scheme. The graph of
σN clearly shows the desired behaviour even for N ≈ 20. The effective slope σN − σN−1 of
the graph has the values 4.4 × 10−4 and 2.5 × 10−4 for N = 20 and N = 25, respectively.

Next, we describe another way of checking the reliability of our approximation scheme.
In view of (80) and (4), the matrix elements

H(0)
mn := 〈m|H|n〉 (90)

may be approximated as

H(0)
mn

N≈
{
X (N)

mn for m, n � N
1
4 π2n2δmn for m, n > N,

(91)

where

X (N)
mn :=

N∑
k=1

Ek〈m|ψk〉〈φk|n〉 (92)

are computed by substituting (71) and (72) in (61) and using (60), (73) and (77).
Consider the N ×N matrix X (N) with entries (92) and let Y (N) be the N ×N matrix with

entries Y (N)
mn := H(0)

mn for all m, n � N . Then Y (N) may be computed exactly using (55), (66),
(68) and (90), whereas the calculation of X (N) uses our approximation scheme. In order to
compare X (N) and Y (N), we will first introduce the normalized matrices,

X̂ (N) := X (N)

‖X (N)‖2
, Ŷ (N) := Y (N)

‖Y (N)‖2
,

and use the Euclidean distance between the matrices X̂ (N) and Ŷ (N), namely

�N := ‖X̂ (N) − Ŷ (N)‖2, (93)

as a measure of the accuracy of our approximation. A reliable approximation corresponds to
a vanishing large N-limit of �N .16 Figure 2 shows the plot of �N for N � 25 and Z = 1.

16 Our use of the normalized matrices X̂ (N) and Ŷ(N) stems from the fact that H is not a bounded operator. It allows
for the interpretation of the term ‘a vanishing large N-limit’ as ‘�N � 1 for sufficiently large N’. In practice this
means �N � νN .
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Figure 2. Graph of �N of equation (93) as a function of N, for Z = 1. Note that �25 ≈ 1.1×10−5.

Table 1. Values of �N of equation (93), Sn of equation (101), and the accuracy index
νN = 2Z/(πN)2 for Z = 1 and various relevant values of N.

N �N SN νN

10 8.2 × 10−5 1.7 × 10−5 2.0 × 10−3

15 3.9 × 10−5 9.0 × 10−6 9.0 × 10−4

20 1.7 × 10−5 3.4 × 10−6 5.1 × 10−4

25 1.1 × 10−5 2.4 × 10−6 3.2 × 10−4

Table 1 lists the values of �N for various values of N and the corresponding values for the
accuracy index νN . The results indicate that even for N = 10 we have a highly reliable
approximation.

5.3. Construction of the Hermitian Hamiltonian h

We can use the above approximation scheme to compute the Hermitian Hamiltonian
h := ρHρ−1 (respectively h = ρHρ−1 = 2h̄2h/(mL2)) that is associated with the PT -
symmetric square well Hamiltonian H (respectively H). In order to do this we first use (18),
(80), (83), (85), to express h in the form

h
N≈

N∑
m,n=1

√
εm

εn

Hmn|εm〉〈εn| +
∞∑

m,n=N+1

H(0)
mn|m〉〈n|

+
N∑

m=1

∞∑
n=N+1

[√
εmHmn|εm〉〈n| +

1√
εm

Hnm|n〉〈εm|
]

= H + δH, (94)

where H(0)
mn is given by (90),

Hmn = 〈εm|H|εn〉
N≈
{∑N

j,k=1 U
†
mj H(0)

jk Ukn ∀m, n � N,

〈εm|H|n〉 N≈ 〈εm|H|ψn〉 = En〈εm|n〉 N≈ 0 ∀m � N, n > N,

(95)

δH :=
N∑

m,n=1

(√
εm

εn

Hmn|εm〉〈εn| − H(0)
mn|m〉〈n|

)
. (96)
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Figure 3. Graph of SN of equation (101) as a function of N, for Z = 1. Note that S25 = 2.4×10−6.

Substituting (95) in (96) and using (85) and

E±1/2
jk =

N∑
m=1

Ujm ε±1/2
m U†

mk, (97)

we find

δH =
N∑

m,n=1

δH(0)
mn|m〉〈n|, (98)

where, for all m, n ∈ {1, 2, . . . , N},

δH(0)
mn :=

N∑
j,k=1

E1/2
mj H(0)

jk E
−1/2
kn − H(0)

mn. (99)

To confirm the consistency of our approximate calculation of h, we check its Hermiticity.
To do this we compare the N × N matrices Q(N) and Q(N)† defined in terms of their entries
according to Q(N)

mn := 〈m|h|n〉 and Q(N)†
mn := Q(N)

nm

∗ = 〈n|h|m〉∗. Clearly, the condition h† = h
is equivalent to

Q(N)† → Q(N) as N → ∞. (100)

Noting that H is not a bounded operator, we follow the method of the preceding section
and define the normalized matrix Q̂(N) := Q(N)/‖Q(N)‖2. This allows us to identify the
Hermiticity condition (100) with

SN := ‖Q̂(N) − Q̂(N)†‖2 � νN . (101)

Figure 3 shows the plot of SN for N � 25 and Z = 1. Table 1 shows some typical values of
SN . The results depicted in figure 3 and table 1 are in complete agreement with (101).

Having obtained the matrix elements of δH in the basis {|n〉}, we can compute its integral
kernel,

KδH(x, x′) := 〈x|δH|x′〉, (102)

and the corresponding pseudo-differential operator in the x-representation. In view of (66),
(68) and (98),

KδH(x, x′) =
N∑

m,n=1

δH(0)
mnψ

(0)
m (x)ψ(0)

n (x′)∗

=
N∑

m,n=1

�mn sin
[πm

2
(x + 1)

]
sin

[πn

2
(x′ + 1)

]
, (103)
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where

�mn := iµm−µnδH(0)
mn. (104)

Next, we follow the derivation of equations (27)–(29) to express δH as a series in powers
of the momentum operator p. This yields

δH =
∞∑


=0

δ
(x)p
, (105)

where

δ
(x) := i
δ̃
(x), (106)

δ̃
(x) := 1


!

∫ 1

−1
KδH(x, x′)(x′ − x)
 dx′ =

N∑
m,n=1

�mn sin
[πm

2
(x + 1)

]
Pn
(x), (107)

Pn
(x) := 1


!

∫ 1

−1
sin

[πn

2
(x′ + 1)

]
(x′ − x)
 dx′. (108)

Using (52)–(56) and (94) we then obtain

h
N≈ H +

∞∑

=0

δ
(x)p
 = p2 + v(x) +
∞∑


=0

δ
(x)p
. (109)

The analogous expression for the Hermitian Hamiltonian h associated with the unscaled
Hamiltonian H is

h
N≈ p2

2m
+ v(x) +

∞∑

=0

γ
(x)p
, (110)

where

γ
(x) := L
−2δ
(2x/L)

m2
−1h̄
−2 . (111)

The integral in (108) may be evaluated analytically. A simple change of variable reduces
it to an integral of the form

∫ π

0 ym sin(ny) dy that may be looked up in [31]. Substituting the
value of this integral in (108) and doing the necessary algebra, we find

Pn
(x) =

∑

j=0

anj
(x + 1)
−j , (112)

where

anj
 := (−1)
2j+1

(
 − j)!




 j

2 �∑
k=0

(−1)j+n+k+1

(πn)2k+1(j − 2k)!
+

(−1)
j

2 �[1 + (−1)j ]

2(πn)j+1


 , (113)

and
⌊

j

2

⌋
denotes the integer part of j

2 . As seen from (112), Pn
 is a polynomial of degree 
.
Using (112) we can obtain a more explicit expression for the coefficient functions δ


appearing in (109) and (111). Substituting (112) in (107) and introducing

bmk
 :=
N∑

n=1

�mnank
, (114)

we have

δ̃
(x) =

∑

k=0

N∑
m=1

bmk
 sin
[πm

2
(x + 1)

]
(x + 1)
−k. (115)

This relation together with (106) yields the desired expression for δ
(x).
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Figure 4. Plot of Re[δ̃
] for 
 = 0, 1, 2, 3, Z = 1 and N = 20.

Next, we recall that the standard calculation (50) of the energy expectation value for a
state vector ψ ∈ Hphys, which uses the position wavefunction � introduced in section 4,
involves the representation ĥ of the Hermitian Hamiltonian h:

〈ψ,Hψ〉+ = 2h̄2

mL2
〈ψ, Hψ〉+ = 2

mL2

∫ 1

−1
�(x)∗ ĥ�(x) dx.

Using 〈x|h = ĥ〈x|, the identity

〈x|p = −i
d

dx
〈x|, (116)

and equations (106), (109), (115) and (114), we have

ĥ
N≈ − d2

dx2
+ v(x) +

∞∑

=0

δ̃
(x)
d


dx

. (117)

Figures 4 and 5 show the plots of the real and imaginary parts of δ̃
(x) for 
 = 0, 1, 2, 3, Z = 1
and N = 20. As seen from figure 5, the graph of Im(δ̃0) is reminiscent of the approximation
of a step function, namely iv, with the first few terms in its Fourier series expansion. In the
appendix we offer an explanation for this observation. Furthermore, these figures suggest
that δ
(x) and consequently δ̃
(x) have a vanishing large 
-limit. This can be established
analytically. Using (106)–(108) and the fact that for all x, x′ ∈ [−1, 1] both (x − x′)/2 and
sin[πm(x′ + 1)/2] are bounded by 1, we can easily conclude that

|δ̃
(x)| � M2



!
, (118)

where M is a positive number depending on �mn. This shows that, for all x ∈ [−1, 1],
lim
→∞ δ̃
(x) = 0.

5.4. The classical Hamiltonian

Having obtained the Hermitian Hamiltonian h for the PT -symmetric square well, we can use
the prescription described in section 3 to obtain the following expression for an underlying
classical Hamiltonian,

Hc(xc, pc)
N≈ p2

c

2m
+

∞∑

=0

Re[γ
(xc)]p


c, (119)
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Figure 5. Plot of Im[δ̃
] for 
 = 0, 1, 2, 3, Z = 1 and N = 20. The dashed curve is the graph of
iv. The resemblance of the graphs of Im[δ̃0] and iv is described in the appendix. The difference
between Im[δ̃
] with 
 � 1 is too small to be distinguished in the energy scale determined by the
potential which is unity in the units used.

where xc ∈ [−L/2, L/2] and pc ∈ R. Equation (119) is a meaningful relation, only if the
series on its right-hand side converges. In view of (106) and (111), the latter is equivalent to
the convergence of

∞∑

−0

Re[δ
(xc)]p


c, (120)

where xc ∈ [−1, 1] and pc ∈ R. According to (118), for all xc ∈ [−1, 1], |Re[δ
(xc)]| �
M2
/
!. Using this relation (and performing the comparison and ratio tests [32]) we can easily
show that the series (120) converges (absolutely) for all values of pc ∈ R and xc ∈ [−1, 1].
Hence (119) is a meaningful expression yielding a well-defined classical Hamiltonian.

Note that Hc as given by (119) is not the classical Hamiltonian in the strict sense that it
would not involve h̄. This is simply because we have not evaluated the h̄ → 0 limit. Indeed,
for the PT -symmetric square well Hamiltonian (52), the assumption that this limit exists has
drastic implications. This is simply because, according to (54), if we assume that the coupling
constant ζ appearing in (53) does not depend on h̄, then taking the limit h̄ → 0 corresponds
to Z → ∞. This implies the occurrence of an infinite number of complex eigenvalues which
in turn indicates that the system does not admit a unitary quantum mechanical description [6].
The only way in which one can retain such a description and at the same time be allowed to
take the limit h̄ → 0 is to assume that ζ depends on h̄ and is at least of order h̄2.

We can reach the same conclusion by noting that the condition Z < Z� ≈ 4.48, for
the possibility of formulating a unitary quantum theory for PT -symmetric square well, is
equivalent to ζ < 8.96h̄2/(mL2) < 2E1 < E2, where E1 and E2 are respectively the
ground state and first excited states of the system. For a light molecule, say O2, with mass
m ≈ 30 GeV, confined in a micrometre size well—which should allow for a classical
description—we find ζ < 1.3 × 10−28 eV. This corresponds to the classical molecule
moving with a speed v < 4.7 × 10−20 m s−1 and a temperature of T < 1.6 × 10−24 K.
These numbers provide a conclusive evidence that non-Hermiticity effects quantified with the
coupling constant ζ are quantum mechanical in nature and have no classical counterpart.

Furthermore, recall that the classical limit h̄ → 0 is meaningful if it is accompanied with
taking n → ∞ in such a way that h̄n stays constant17. But as we explained in section 5.1, in

17 This follows from (73) and the requirement that in the classical limit not all the energy levels collapse to zero.



11666 A Mostafazadeh and A Batal

the limit n → ∞ the effects of the non-Hermiticity of the Hamiltonian disappear. Therefore,
the classical limit of all the theories with different allowed values of Z < Z� coincides with
that of the Hermitian infinite square well (Z = 0).

The above discussion of the classical limit of the PT -symmetric square well Hamiltonian
is based on the requirement that the corresponding quantum theory has a h̄ → 0 limit. This is
the conventional way of defining the classical limit of a quantum system. Yet we can consider
the h̄-dependent classical observable Hc and view it as a classical Hamiltonian with the
property that its pseudo-Hermitian quantization with appropriate (symmetric) factor ordering
yields the Hermitian Hamiltonian h.

There is also another approach for determining a classical Hamiltonian for PT -symmetric
quantum systems [5, 33]. It involves a direct replacement of the operators x and p, which
appear in the expression for the quantum Hamiltonian operator H, by the classical position xc

and momentum pc and letting the latter take complex values. If one applies this prescription
to the PT -symmetric square well and enforces the condition of the existence of a proper
h̄ → 0 limit, then again the condition Z < Z� implies ζ → 0, and one recovers the classical
Hamiltonian for a free particle confined in an infinite (real) square well. However, if one does
not identity the substitution p → pc and x → xc with taking h̄ → 0 in (52), then one obtains
a complex-valued ‘classical Hamiltonian’, namely

H ′
c = p2

c

2m
+ v(xc). (121)

It is the classical Hamiltonian dynamical system defined by such complex ‘classical
Hamiltonians’ that are studied in [5, 33]. Although we acknowledge the interesting
mathematical consequences of this study and its relevance to the use of complex WKB
approximation in calculating the energy levels of various PT -symmetric models [34], we are
inclined to adopt the standard definition of a classical observable which requires the latter
to be real valued [36]18. The PT -symmetric quantum mechanics also makes an implicit
use of this definition in insisting that the eigenvalues of the observables, in particular the
Hamiltonian, be real [15, 35]. According to this definition, the observables xc and pc assume
real values, and H ′

c, which is a complex-valued function of xc and pc, is not a physical
observable. In particular, it cannot serve as a physical classical Hamiltonian (for a system
with a one-dimensional configuration space).

5.5. Construction of the observables

The construction of the observables O : Hphys → Hphys for the PT -symmetric square well
mimics that of the Hermitian Hamiltonian h. We begin our calculation of O by employing our
approximation scheme to express (19) in the form

O
N≈

N∑
m,n=1

√
εn

εm

omn|εm〉〈εn| +
∞∑

m,n=N+1

o(0)
mn|m〉〈n|

+
N∑

m=1

∞∑
n=N+1

[
1√
εm

omn|εm〉〈n| +
√

εmonm|n〉〈εm|
]

N≈ o + δo, (122)

where o : H → H is a Hermitian operator,

omn := 〈εm|o|εn〉
N≈
{∑N

j,k=1 U
†
mjo

(0)
jk Ukn for m, n � N,

〈εm|o|n〉 N≈ ∑N
k=1 U

†
mko

(0)
kn for m � N, n > N,

(123)

18 This is because we are not aware of any other precise definition of a classical observable.
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o(0)
mn := 〈m|o|n〉, (124)

δo :=
N∑

m,n=1

Amn|m〉〈n| +
N∑

m=1

∞∑
n=N+1

(Bmn|m〉〈n| + Cnm|n〉〈m|) , (125)

Amn :=
N∑

j,k=1

E−1/2
mj o

(0)
jk E

1/2
kn − o(0)

mn, (126)

Bmn :=
N∑

k=1

(
E−1/2

mk − δmk

)
o

(0)
kn , (127)

Cnm :=
N∑

k=1

o
(0)
nk

(
E1/2

km − δkm

)
. (128)

Here δmk stands for the Kronecker δ-function, and we have used (83), (85) and (97).
We can express δo and consequently O as power series in p with x-dependent coefficients

similarly to our derivation of (110). Note, however, that in this case we have to deal with the
infinite sum appearing in (125). The presence of this sum is a manifestation of the fact that
(unlike the Hamiltonian) a general observable will mix the state vectors |n〉 with n � N with
those with n > N .

The power series expansion of O in powers of p has the form

O
N≈ o +

∞∑

=0

ω
(x) p
, ω
(x) = i
ω̃
(x), (129)

ω̃
(x) :=

∑

k=0

∞∑
m=1

cmk
 sin
[πm

2
(x + 1)

]
(x + 1)
−k, (130)

cmk
 :=
{∑N

n=1 iµm−µnAmnank
 +
∑∞

n=N+1 iµm−µnBmnank
 for m � N∑N
n=1 iµm−µnCmnank
 for m > N,

(131)

where ank
 are the coefficients given in (113). Again in calculating the expectation value of
O for a normalized state vector ψ ∈ Hphys with position wavefunction �, we use the position
representation ô of o (defined by 〈x|o = ô〈x|):

〈ψ,Oψ〉+ =
∫ 1

−1
�(x)∗ ô�(x) dx. (132)

Note also that by replacing (o, x, p) in (129) with the corresponding classical quantities
(oc, xc, pc), we obtain a generally complex-valued function �c(xc, pc) (provided that the
corresponding infinite series appearing in (130) and (131) converge). Clearly, taking o = h,
we have �c = H ′

c, where H ′
c is the complex Hamiltonian (121).

In order to compare the operators o and O we represent them in the ordinary position
representation, i.e., compare ô with Ô. The latter is defined by 〈x|O = Ô〈x|. Using (130),
(131) and (116), we have

Ô = ô +
∞∑


=0

ω̃
(x)
d


dx

. (133)
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Figure 6. Graph of Re[ω̃(X)

 ] for 
 = 0, 1, 2, 3, Z = 1 and N = 20.
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Figure 7. Graph of Im[ω̃(X)

 ] for 
 = 0, 1, 2, 3, Z = 1 and N = 20.

A concrete example is the dimensionless position operator X := 2X/L: letting o = x, we
find

X = x +
∞∑


=0

ω
(X)

 (x) p
, (134)

where ω
(X)

 (x) denote the value of ω
(x) obtained by setting o = x in (124). The

x-representation of X has the form

X̂ = x +
∞∑


=0

ω̃
(X)

 (x)

d


dx

, (135)

where ω̃
(X)

 (x) is the value of ω̃
(x) for o = x. Note that the infinite series in (131) that defines

ω̃
(x) converges quite rapidly. This allows us to obtain an approximate value for this series
(for any value of 
) by summing just the first few terms. We can include enough terms in this
series so that the approximation error becomes smaller than our accuracy index νN . Figures 6
and 7 illustrate the plots of the real and imaginary parts of ω̃

(x)

 , for 
 = 0, 1, 2, 3, Z = 1, and

N = 20, that we have obtained in this way.

5.6. Probability density, position measurements and localized states

According to (43), the probability density for the localization in space is given by the modulus
square of the position wavefunction �. We can employ our approximation scheme to reduce
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Figure 8. Graph of �� = � − �0 for ψ(x) = Nn sin[nπ(x + 1)/2] with n = 1, 2, N = 20
and Z = 0.3, 0.7, 1, where � is the probability density and �0 is its value for Z = 0 and Nn are
normalization constants.

the expansion (51) of � into the finite sum

�(x)
N≈ ψ(x) +

N∑
n=1

an sin
[πn

2
(x + 1)

]
, (136)

where

an = iµn

(
N∑

m=1

E1/2
nm f (0)

m − f (0)
n

)
, (137)

f (0)
m = 〈m|ψ〉 = i−µm

∫ 1

−1
sin

[πm

2
(x′ + 1)

]
ψ(x′) dx′, (138)

and we have made use of (66)–(68), (83), (85), (51) and (97).
Having obtained the general expression for the position wavefunction, we can compute

the probability density �(x) := |�(x)|2. Note, however, that the latter expression is valid for
the normalized wavefunctions. Figure 8 shows the plots of the difference �� of the probability
density � for ψ(x) = Nn sin[nπ(x + 1)/2], with n = 1, 2, for N = 20 and Z = 0.3, 0.7, 1
with that (�0) for Z = 0. Figure 9 gives the plots of the probability density difference �� for
ψ(x) = Nn sin[nπ(x + 1)/2] with n = 3, 4, . . . , 8, N = 20, and Z = 1.19

We can also use expression (136) for the position wavefunction to compute the position
expectation value,

〈ψ, Xψ〉+ =
∫ 1

−1
x|�(x)|2 dx. (139)

and the uncertainty in position

�x =
√

〈ψ, X2ψ〉+ − 〈ψ, Xψ〉2
+. (140)

Table 2 gives �x for ψ(x) = Nn sin[nπ(x + 1)/2] with n = 1, 2, . . . , 7, Z = 0, 0.5, 1 and
N = 20. It turns out that the calculation of the same quantities using N = 10 yields results
that differ from those listed in table 2 by numbers that are smaller than 10−6. This is another

19 Here Nn are appropriate normalization constants.
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Figure 9. Graphs of �� = � − �0 for ψ(x) = Nn sin[nπ(x + 1)/2] for n = 3, 4, . . . , 8, N = 20
and Z = 1, where � is the probability density and �0 is its value for Z = 0 andNn are normalization
constants.

Table 2. The position uncertainty �x for ψ(x) = Nn sin[nπ(x + 1)/2] with n = 1, 2, . . . , 7,
Z = 0, 0.5, 1, and N = 20. Note that for n = 6 and 7 the difference between values of �x for
Z = 1 and Z = 0 is smaller than the accuracy index ν20 = 0.0005.

n Z = 0 Z = 0.5 Z = 1 �x|Z=1 − �x|Z=0

1 0.3615 0.3618 0.3628 0.0013
2 0.5317 0.5308 0.5280 −0.0037
3 0.5575 0.5571 0.5559 −0.0016
4 0.5663 0.5660 0.5652 −0.0011
5 0.5704 0.5702 0.5697 −0.0006
6 0.5725 0.5724 0.5721 −0.0004
7 0.5738 0.5737 0.5735 −0.0003

confirmation of the consistency of our approximation scheme. Furthermore, note that as
we expect the effect of the non-Hermiticity of the initial Hamiltonian (52) diminishes as n
increases. Already for n = 6, its contribution to position uncertainty is smaller than the
accuracy index ν20 = 0.0005.

As seen from (134), in the x-representation the position operator X is a pseudo-differential
operator. This in particular means that the expectation value of X in a state described by the
state vector ψ depends on all the derivatives of ψ . In this sense unlike the usual position
operator, X is a nonlocal operator. Note, however, that this nonlocal character of X manifests
itself only if one insists on using the usual position representation ψ(x) of the state vectors
ψ . This is not a reasonable choice, because being a non-Hermitian operator acting in Hphys

the usual position operator x is not a physical observable.
Probably the best demonstration of the nonlocal nature of X is provided by the shape of

the position state vector ξ (y) that is localized at y ∈ (−L,L). As a function belonging to H,
it has the form

ξ (y)(x) = 〈x|ξ (y)〉 = 〈x|ρ−1|y〉 =
∞∑

n=1

ε−1/2
n εn(x)εn(y)∗,
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where we have employed (36), (11) and (32). Using the same method as that leading to (136)
we can express this relation as

ξ (y)(x)
N≈ δ(x − y) + F(x, y), (141)

where

F(x, y) :=
N∑

m,n=1

iµm−µn
(
E−1/2

mn − δmn

)
sin

[
πm

L

(
x +

L

2

)]
sin

[
πn

L

(
y +

L

2

)]
,

and we have used (97).
Figure 10 shows the real and imaginary parts of ξ (y)(x) for L = 2, N = 20, Z = 1

and y = −1/2, 0, 1/2. Figure 11 shows the real and imaginary parts of ξ (1/3)(x) for
L = 2, N = 20, and various values of Z. As expected the spreading of the localized state
ξ (1/3) is an increasing function of the non-Hermiticity parameter Z.

5.7. Dynamical consequences of non-Hermiticity

In the preceding subsection, we discussed the computation of the observables and the
associated physical quantities. These provide information on the kinematical content of
the PT -symmetric square well. In this subsection, we investigate its dynamical content.

The time evolution of an initial state vector ψ(t0) ∈ Hphys is given by

ψ(t) = e−i(t−t0)H/h̄ψ(t0), for all t ∈ R. (142)

Alternatively, in terms of the dimensionless time parameter,

τ :=
(

2h̄

mL2

)
t, (143)

we have

ψ(τ) = e−i(τ−τ0)Hψ(τ0), (144)

where τ0 = 2h̄t0/(mL2).
Expanding ψ(τ) in the basis {ψn}, we can express (144) in the form

ψ(τ) =
∞∑

n=1

cn e−i(τ−τ0)Enψn, cn := 〈φn|ψ(τ0)〉. (145)

Next, we employ our Nth order approximation scheme. Using (80), we have

ψ(τ)
N≈

N∑
n=1

cn e−i(τ−τ0)Enψn +
∞∑

n=N+1

c(0)
n e−iπ2n2(τ−τ0)/4ψ(0)

n , (146)

where

c(0)
n := 〈

ψ(0)
n

∣∣ψ(τ0)
〉
, (147)

and we have used En

N≈ E(0)
n := π2n2/4 for n > N .

To explore the dynamical effects of the non-Hermiticity of the Hamiltonian (for Z �= 0)
we compute the position expectation value for the evolving state vectors ψ(τ) having the
initial value,

ψ(τ0) = Njψ
(0)
j with j � N, (148)
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Figure 10. Graph of Re[ξ (y)] and Im[ξ (y)] for L = 2, N = 20, Z = 1 and y = −1/2, 0, 1/2.
Note that Re[ξ (y)] has a δ-function singularity at y and that except for this singularity the scale of
variations of Im[ξ (y)] is much greater than that of Re[ξ (y)].

and Nj := 〈
ψ

(0)
j , ψ

(0)
j

〉−1/2
+ . For these choices of the initial state vector, c(0)

n = 0 for n > N

and (146) simplifies as

ψ(τ)
N≈

N∑
n=1

cn e−i(τ−τ0)Enψn. (149)
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Figure 11. Graph of Re[ξ (1/3)] and Im[ξ (1/3)] for L = 2, N = 20 and Z = 0, 0.5, 0.7, 1.

Furthermore, for Z = 0, ψ(τ0) corresponds to a stationary state with a vanishing position
expectation value for all τ ∈ R. For Z > 0, ψ(τ0) does not represent a stationary state and
the position expectation value is a nonconstant function of time. To determine this function,
we use the position representation of the state.

Let �(x; τ) := 〈ξ (x), ψ(τ)〉+ = 〈x|ρ|ψ(τ)〉 be the position wavefunction for the state
vector ψ(τ). Then, in light of (83), (85), (97) and (149), we have

�(x; τ)
N≈

N∑
n=1

cn e−i(τ−τ0)En�n(x), (150)

where for all n � N

�n(x) := 〈x|ρ|ψn〉
N≈

N∑
q,k=1

iµqE1/2
qk 〈k|ψn〉 sin

[πq

2
(x + 1)

]
. (151)

Next, we employ (139) to compute the position expectation value for ψ(τ). In view of (150),

〈ψ(τ), Xψ(τ)〉+ =
∫ 1

−1
x|�(x; τ)|2 dx

N≈
N∑

m,n=1

�mn e−i(τ−τ0)(En−Em), (152)

where

�mn := c∗
mcn

∫ 1

−1
x�m(x)∗�n(x) dx

= c∗
mcn

N∑
k,q,v=1

N∑
u=1
u �=q

(
8qu[(−1)q+u − 1]

π2(q2 − u2)2

)
iµu−µqE1/2

kq E1/2
uv 〈ψm|k〉〈v|ψn〉. (153)

Figures 12 and 13 show the trajectories traced by the position expectation value (152) in time,
for the initial state vector (148) with j = 1, 2, . . . , 7, Z = 1 and N = 10.

6. Discussion and conclusion

In this paper, we have outlined a general formulation of PT -symmetric (and more generally
pseudo-Hermitian) quantum mechanics paying attention to the physical aspects of the theory.
This formulation, is consistent with the requirements of quantum measurement theory and
allows for the determination of the physical observables. In fact, to the best of our knowledge,
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Figure 12. Graph of the trajectory traced by the position expectation value in time for the initial
state vector ψ(0) = Njψ

(0)
j with j = 1, 2, where Z = 1, N = 10, τ0 = 0, τ ∈ [0, 16/π ].

The horizontal and vertical axes, respectively, represent 〈ψ(τ), Xψ(τ)〉+ and τ . The τ -axis also
corresponds to the trajectory for the Hermitian case (Z = 0). Note that 16/π ≈ 5.1 is twice the
characteristic period 2π/E(0)
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Figure 13. Graph of the trajectory traced by 〈ψ(τ), Xψ(τ)〉+ for ψ(0) = Njψ
(0)
j with

j = 3, 4, . . . , 7 and the same parameters and conventions as in figure 12. Note that the range of
values of the horizontal axis is reduced to amplify the behaviour of the trajectories. The envelops
seem to have the same period as that of E

(0)
1 , i.e., 2π/E(0)

1 ≈ 8/π .

this paper is the first to offer an explicit calculation of observables and concrete physical
quantities for a PT -symmetric system with an infinite-dimensional Hilbert space. Perhaps
more importantly, it proposes a method to identify an underlying classical Hamiltonian that
satisfies the usual postulates of classical mechanics and a quantization scheme that relates the
latter to the defining Hamiltonian of the theory. We view this as a necessary step towards
a clearer understanding of the potential physical applications of PT -symmetric quantum
mechanics.
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Another important outcome of our investigation is that we are now able to consider the
addition of the interaction terms to a PT -symmetric Hamiltonian H without disturbing the
structure of its Hilbert space. This is simply done by selecting the additional interaction terms
from among physical observables.

Our investigation of the PT -symmetric square well revealed the fact that the underlying
classical Hamiltonian for this system coincides with that of the ordinary Hermitian infinite
square well. In other words, the non-Hermiticity effects are quantum mechanical in nature.
This can be traced back to the simple observation that the non-Hermiticity of the Hamiltonian
(52) only affects the low-lying energy levels20.

Our general results confirm the assertion that as a fundamental theory PT -symmetric
quantum mechanics is both mathematically and physically equivalent to conventional quantum
mechanics [17]. In fact, it is this very equivalence that allows for the computation of the
physical observables. This in turn leads to the natural question of whether there is any
valid motivation for further development of PT -symmetric and pseudo-Hermitian quantum
mechanics. Our answer to this question is in the affirmative. It is supported by the following
observations.

(1) As we showed for any PT -symmetric Hamiltonian H, there is a corresponding Hermitian
Hamiltonian. But the latter is a generically nonlocal (pseudo-differential) operator.
Therefore, if one is interested in calculating physical quantities that make explicit use of
the Hamiltonian one is naturally inclined to make use of the original Hamiltonian H and the
inner product 〈·, ·〉+. However, if one wishes to compute quantities involving the position
and momentum of the system, then one is essentially forced to use the Hermitian picture.
In summary, developing PT -symmetric quantum mechanics opens up the possibility of
treating quantum systems with certain nonlocal Hermitian Hamiltonians. The classical
Hamiltonian for such a system is a real analytic function of x and p that involves
arbitrarily high powers of p. The pseudo-Hermitian quantization scheme introduced in this
paper provides a description of the quantum systems associated with these complicated
Hamiltonians. It yields a PT -symmetric quantum Hamiltonian operator that is a local
(differential) operator. In a sense, the use of the PT -symmetric quantum mechanics is
equivalent to trading a complicated nonlocal Hermitian Hamiltonian with a local PT -
symmetric Hamiltonian21.

(2) The basic ideas so far developed within the framework of pseudo-Hermitian quantum
mechanics to assess the structure of PT -symmetric quantum mechanics have some
remarkable applications in relativistic quantum mechanics [21, 22, 37], quantum
cosmology [21, 38], statistical mechanics [39] and magnetohydrodynamics [40]. This
strengthens the belief that the study of PT -symmetric quantum mechanics may lead to
some concrete advances in other research areas. It is needless to mention the possibility
that the field theoretical extension of such a study may actually turn out to achieve some
of the ambitious goals described in [18].

Next, we wish to elucidate the relationship between our approach and the formulation of
the PT -symmetric quantum mechanics based on the so-called charge-conjugation operator C
as outlined in [15]. See also [41]. In our approach, the metric operator η+ plays the same role

20 We do not claim that this is a common feature of all the PT -symmetric quantum Hamiltonians. In general, we
expect the non-Hermiticity of the quantum Hamiltonian to affect the underlying classical Hamiltonian. We leave a
more detailed study of this issue for a future publication.
21 The characterization of all the nonlocal Hermitian Hamiltonians that may be mapped to PT-symmetric or pseudo-
Hermitian Hamiltonians of the standard (kinetic+potential) form is a difficult open problem.
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as the operator C. In fact as shown in [14], C may be expressed in terms of η+ according to

C = η−1
+ P. (154)

Although both η+ and C determine the inner product of the physical Hilbert space, the
expression of the latter in terms of η+ is slightly simpler. It also agrees with the standard
mathematical approach used in dealing with different inner products on the same vector space.
Furthermore, the recent attempts [42] at approximate calculations of C for PT -symmetric
potentials of the form µ2x2 − λ2(ix)N , with µ, λ ∈ R, have revealed the remarkable fact
that these calculations simplify enormously provided that one first computes η+ and then uses
(154) to determine C.22 This provides a practical justification for the assertion that η+ is a more
basic ingredient of the theory than C. The construction of the observables provides a much
more concrete evidence for the validity of this assertion. Note also that the formulation of the
theory that uses C and avoids any explicit mention of η+ leads to the same general conclusions
such as the physical equivalence of the PT -symmetric and conventional quantum mechanics.
A mathematically rigorous proof of this statement is given in [35].

Finally, we wish to comment on whether one can apply the general scheme offered
by pseudo-Hermitian quantum mechanics to PT -symmetric systems defined on a complex
contour. The negative attitude expressed by some of the workers on this issue is based on the
argument that for these systems the eigenfunctions of the Hamiltonian do not belong to the
Hilbert space L2(R) and hence one cannot define a metric operator η+ and apply the results of
the theory of pseudo-Hermitian operators. The problem with this argument is that nowhere in
the formulation of the pseudo-Hermitian quantum mechanics [12] does one assume that the
initial Hilbert space H is L2(R). As explained in section 2, H is constructed in two steps:
(i) one takes the span VH of the eigenvectors ψn of H (that is assumed to have a real and
discrete spectrum) and endows it with some arbitrary (positive-definite) inner product; (ii) one
performs the Cauchy completion of this inner product space to obtain the Hilbert space H.
The only important condition to be checked is whether H is separable. This follows from
the following simple argument (see also [35]). The set {ψn} of the eigenvectors spans VH ,
and as H is the Cauchy completion of VH , VH is dense in H. This implies that H is the
closure of the span of {ψn}. Being eigenvectors with different eigenvalues, ψn are also linearly
independent. Hence {ψn} is a countable basis of H. In particular, performing Gram–Schmidt
orthonormalization on {ψn}, one can construct a countable orthonormal basis of H. This is
equivalent to the statement that H is a separable Hilbert space [13]. This general argument
shows that indeed there is no obstruction to employ pseudo-Hermitian quantum mechanics to
systems defined on a complex contour. The practical difference with systems defined on the
real axis is that one cannot make a direct use of the familiar L2-inner product. It turns out that
this does not lead to any insurmountable difficulty either. In contrast, the use of the machinery
of pseudo-Hermitian quantum mechanics in describing PT -symmetric systems defined on a
complex contour has both practical and conceptual advantages [43].
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Appendix

In this appendix, we present a general method for checking the Hermiticity of the Hamiltonian
h using its power series expansion (109). This provides an interesting explanation for the
resemblance of the graph of the function Im[δ̃0(x)] to that of the iv(x) as shown in figure 5.

Using (109) and the fact that v(x) is imaginary, we have

h† N≈ p2 − v(x) +
∞∑


=0

p
δ
(x)∗. (A.1)

Substituting (109) and (A.1), in h† = h, we then find

v(x) +
1

2

∞∑

=0

[δ
(x)p
 − p
δ
(x)∗]
N≈ 0. (A.2)

Our purpose is to express the left-hand side of this relation as a power series in p with all
x-dependent coefficient appearing to the left of powers of p, i.e., obtain a set of functions f


such that
∞∑


=0

f
(x)p
 = v(x) +
1

2

∞∑

=0

[δ
(x)p
 − p
δ
(x)∗] = v(x) +
1

2

∞∑

=0

i
[δ̃
(x)p
 − p
δ̃
(x)∗].

(A.3)

Then the condition (A.2) takes the form

f
(x)
N≈ 0 for all 
 ∈ {0, 1, 2, . . .}. (A.4)

In order to compute f
, we use the following useful identity which may be proven by
induction on 
 and use of [x, p] = i,

p
f (x) =

∑

k=0

(



k

)
(−i)k

dkf (x)

dxk
p
−k, (A.5)

where f : R → R is an 
-times differentiable function and
(


k

)
:= 
!

k!(
−k)! .

Using (A.5), (A.3), and the fact that v(x) is imaginary, we can express the condition (A.4),
after some rather lengthy algebra, as follows:

• For 
 = 0, f0
N≈ 0 yields

u0(x)
N≈ 0, w0(x)

N≈ iv(x), (A.6)

where

u0(x) :=
∞∑

k=1

(−1)k
dk

dxk
Re[δ̃k(x)], (A.7)

w0(x) := Im[δ̃0(x)] +
1

2

∞∑
k=1

(−1)k
dk

dxk
Im[δ̃k(x)]. (A.8)

• For odd values of 
, f


N≈ 0 yields

u
−(x)
N≈ Re[δ̃
(x)], w
−(x)

N≈ 0, for all 
 ∈ {1, 3, 5, . . .}, (A.9)
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where

u
−(x) := 1

2

∞∑
k=1

(−1)
+k

[
(
 + k)!


! k!

]
dk

dxk
Re[δ̃
+k(x)], (A.10)

w
−(x) :=
∞∑

k=1

(−1)
+k

[
(
 + k)!


! k!

]
dk

dxk
Im[δ̃
+k(x)]. (A.11)

• For positive even values of 
, f


N≈ 0 yields

u
+(x)
N≈ 0, w
+(x)

N≈ Im[δ̃
(x)], for all 
 ∈ {2, 4, 5, . . .}, (A.12)

where

u
+(x) :=
∞∑

k=1

(−1)
+k

[
(
 + k)!


! k!

]
dk

dxk
Re[δ̃
+k(x)], (A.13)

w
+(x) := −1

2

∞∑
k=1

(−1)
+k

[
(
 + k)!


! k!

]
dk

dxk
Im[δ̃
+k(x)]. (A.14)

Unfortunately, the infinite series appearing in the above relations involve arbitrarily high
order derivatives of δ̃
. This reduces their convergence rate appreciably (compared to the series
expansion (109) for h) and amplifies the approximation errors considerably, thus rendering a
numerical verification of (A.6), (A.12) and (A.9) intractable. However, the second condition
in (A.6) provides an interesting explanation for the particular shape of Im[δ̃0]: neglecting all
the terms involving Im[δ̃
] with 
 > 0, this condition reads,

Im[δ̃0(x)] ≈ iv(x) =
{−Z for −1 < x < 0
Z for 0 < x < 1.

This is in remarkable good agreement with the graph of Im[δ̃0(x)] as depicted in figure 5.

References

[1] Mostafazadeh A 2002 J. Math. Phys. 43 205
[2] Mostafazadeh A 2002 J. Math. Phys. 43 2814
[3] Mostafazadeh A 2002 J. Math. Phys. 43 3944
[4] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[5] Bender C M, Boettcher S and Meisenger P N 1999 J. Math. Phys. 40 2201
[6] Mostafazadeh A 2004 J. Math. Phys. 45 932
[7] Scholtz F G, Geyer H B and Hahne F J W 1992 Ann. Phys. 213 74
[8] Kretschmer R and Szymanowski L 2004 Phys. Lett. A 325 112
[9] Solombrino L 2002 J. Math. Phys. 43 5439

[10] Mostafazadeh A 2002 J. Math. Phys. 43 6343
Mostafazadeh A 2003 J. Math. Phys. 44 943 (erratum)

[11] Scolarici G and Solombrino L 2003 J. Math. Phys. 44 4450
[12] Mostafazadeh A 2003 Czech J. Phys. 53 1079
[13] Reed M and Simon B 1980 Functional Analysis vol 1 (San Diego, CA: Academic)
[14] Mostafazadeh A 2003 J. Math. Phys. 44 974
[15] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[16] Mostafazadeh A 2003 J. Phys. A: Math. Gen. 36 7081
[17] Mostafazadeh A 2003 Preprint quant-ph/0310164
[18] Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 71 1095
[19] Bender C M, Brody D C and Jones H F 2004 Phys. Rev. Lett. 92 119902



Physical aspects of pseudo-Hermitian and PT -symmetric quantum mechanics 11679

[20] Mostafazadeh A 2004 Preprint quant-ph/0407070
[21] Mostafazadeh A 2003 Class. Quantum Grav. 20 155
[22] Mostafazadeh A 2003 Preprint quant-ph/0307059
[23] Wong J 1967 J. Math. Phys. 8 2039

Faisal F H M and Moloney J V 1981 J. Phys. B: At. Mol. Phys. 14 3603
[24] Mostafazadeh A 2002 Nucl. Phys. B 640 419
[25] Bohm A 1993 Quantum Mechanics: Foundations and Applications 3rd edn (Berlin: Springer)
[26] Znojil M 2001 Phys. Lett. A 285 7
[27] Bagchi B, Mallik S and Quesne C 2002 Mod. Phys. Lett A 17 1651
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